34 research outputs found

    Grounding Description-Driven Dialogue State Trackers with Knowledge-Seeking Turns

    Full text link
    Schema-guided dialogue state trackers can generalise to new domains without further training, yet they are sensitive to the writing style of the schemata. Augmenting the training set with human or synthetic schema paraphrases improves the model robustness to these variations but can be either costly or difficult to control. We propose to circumvent these issues by grounding the state tracking model in knowledge-seeking turns collected from the dialogue corpus as well as the schema. Including these turns in prompts during finetuning and inference leads to marked improvements in model robustness, as demonstrated by large average joint goal accuracy and schema sensitivity improvements on SGD and SGD-X.Comment: Best Long Paper of SIGDIAL 202

    5IDER: Unified Query Rewriting for Steering, Intent Carryover, Disfluencies, Entity Carryover and Repair

    Full text link
    Providing voice assistants the ability to navigate multi-turn conversations is a challenging problem. Handling multi-turn interactions requires the system to understand various conversational use-cases, such as steering, intent carryover, disfluencies, entity carryover, and repair. The complexity of this problem is compounded by the fact that these use-cases mix with each other, often appearing simultaneously in natural language. This work proposes a non-autoregressive query rewriting architecture that can handle not only the five aforementioned tasks, but also complex compositions of these use-cases. We show that our proposed model has competitive single task performance compared to the baseline approach, and even outperforms a fine-tuned T5 model in use-case compositions, despite being 15 times smaller in parameters and 25 times faster in latency.Comment: Interspeech 202

    Battery Management System for 24-V Battery-Powered Electric Wheelchair

    Get PDF
    This paper describes a simplified battery-management system using a digital signal processor for a 24-V battery-powered electric wheelchair to modulate and protect the battery from operating outside its safe operating area, such as over-temperature, under-temperature, over-voltage, under-voltage, over-current discharge, or over-current charging. Using the buck-boost circuit topology, we achieved and demonstrated both battery balance and protection in a prototype 12-V/40-Ah series-connected two-battery module. Simulation results show that the proposed battery management system is feasible for a 24-V battery-powered electric wheelchair application
    corecore